Computational scales of Sobolev norms with application to preconditioning
نویسندگان
چکیده
This paper provides a framework for developing computationally efficient multilevel preconditioners and representations for Sobolev norms. Specifically, given a Hilbert space V and a nested sequence of subspaces V1 ⊂ V2 ⊂ . . . ⊂ V , we construct operators which are spectrally equivalent to those of the form A = ∑ k μk(Qk −Qk−1). Here μk , k = 1, 2, . . . , are positive numbers and Qk is the orthogonal projector onto Vk with Q0 = 0. We first present abstract results which show when A is spectrally equivalent to a similarly constructed operator à defined in terms of an approximation Q̃k of Qk , for k = 1, 2, . . . . We show that these results lead to efficient preconditioners for discretizations of differential and pseudo-differential operators of positive and negative order. These results extend to sums of operators. For example, singularly perturbed problems such as I− ∆ can be preconditioned uniformly independently of the parameter . We also show how to precondition an operator which results from Tikhonov regularization of a problem with noisy data. Finally, we describe how the technique provides computationally efficient bounded discrete extensions which have applications to domain decomposition.
منابع مشابه
Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples
This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalizations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results t...
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملA computational framework for the regularization of adjoint analysis in multiscale PDE systems
This paper examines the regularization opportunities available in the adjoint analysis and optimization of multiscale PDE systems. Regularization may be introduced into such optimization problems by modifying the form of the evolution equation and the forms of the norms and inner products used to frame the adjoint analysis. Typically, L2 brackets are used in the definition of the cost functiona...
متن کاملDiscrete Interpolation Norms with Applications
We describe norm representations for interpolation spaces generated by finitedimensional subspaces of Hilbert spaces. These norms are products of integer and non-integer powers of the Grammian matrices associated with the generating pair of spaces for the interpolation space. We include a brief description of some of the algorithms which allow the efficient computation of matrix powers. We cons...
متن کاملNotes on Limits of Sobolev Spaces and the Continuity of Interpolation Scales
We extend lemmas by Bourgain-Brezis-Mironescu (2001), and Maz’ya-Shaposhnikova (2002), on limits of Sobolev spaces, to the setting of interpolation scales. This is achieved by means of establishing the continuity of real and complex interpolation scales at the end points. A connection to extrapolation theory is developed, and a new application to limits of Sobolev scales is obtained. We also gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000